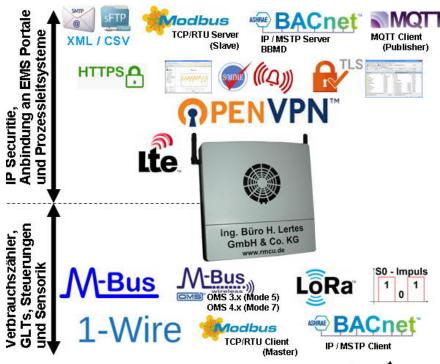


SYSMESS 4 DATENLOGGER & GATEWAY

Anleitung (RMCU / MiDASS)

LoRa FW 6.5.x 09/2020

RmCU V4.0 DIN Rail



MiDASS V4.0 Indoor

MiDASS V4.0 Outdoor

DSGVO + ISO 27001 compliant

1 von 9

Re mote	Control	Unit	M -Bus	<i>i</i> ntegrated	D ata	Application	Server	System	า	
Inhaltsverzeichnis:										
_oRa FW 6	6.5.x 10/2	020							1	

1 LoRa

Der LoRaWAN Concentrator (Basisstation) versteht sich als Erweiterung der bestehenden MiDASS / RmCU Konzepte um Verbrauchszähler mit LoRaWAN an übergeordnete Portale wie z.B. Energie Management Systeme anzubinden.

Mit unserem LoRaWAN Concentrator (Basisstation) können eigene, von Drittanbietern unabhängige, LoRa- Netze aufgebaut werden.

Es können LoRaWAN kompatible Sensoren von Class A mit Aktivierungsmode ABP und OTAA aufgeschaltet werden.

EU868. Senden und empfangen mit verschiedenen Spreizfaktoren auf 868 MHz mit bis zu 8 Kanälen.

Die Datenprotokolle werden vom RmCU empfangen und decodiert und über unsere Standardschnittstellen XML / CSV, BACnet, MQTT oder Modbus zur Verfügung gestellt (u.U. Sensorspezifische Parser Anpassung notwendig).

Die IP- Anbindung an das übergeordnete System erfolgt wie gewohnt im eigenen LAN über eine RJ-45 Schnittstelle oder über ein integriertes LTE- Modem, optional mit einem integrierten OpenVPN Client.

!	RSSI [dBm]	Freq [MHz]	SFBW	SNR [dB]	Empfangszeit	TPID	DevAddr	DevType	Wert	Bemerkung	
	-30	868.300	SF7BW125		2020-10-12 13:36:34	DZG_DVS74	01000122	DZG_DVS74.G2	0.000 kWh	Strom	Werte Anzeigen
99	-35	867.100	SF12BW12	100	2020-10-12 08:15:32	Sontax	01000121	Sontex_SC739	0.000 kWh	Supercal 739	Werte Anzeigen
99	-103	868.300	SF12BW12	5 -30	2020-09-23 11:48:04	Innotas_S0_T	0100011F	Innotas_S0	78874.000 kWh		Werte Anzeigen
99	-22	868.500	SF12BW12	5 70	2020-09-24 14:31:31	Adeunis_DigIO	0100011D	Adeunis_DI	64		Werte Anzeigen
99	-37	868.500	SF12BW12	5 70	2020-09-23 15:01:40	T330_Cold	0100011C	Herz_UH_Comb	29.200 C		Werte Anzeigen
	-	-	-	-		Innotas_S0	0100000F	Innotas_S0	n/a	test driver	Werte Arzeigen
	-	-	-	-	-	W1_Axioma	0100011A	Axioma_W1	n/a	Qalcosonic W1	Werte Anzeigen
	-	-	-	-	-	EBZ	0100000E	EBZ_EI	n/a	EBZ Stromzaehler	Werte Anzeigen
99	-45	868.100	SF12BW12	5 70	2020-10-12 07:50:22	Innotas_HKV	01000010	Innotas_EHKV	2.000		Werte Anzeigen
99	-74	868.100	SF12BW12	90	2020-09-18 20:54:48	01000191_401_ers_l	01000191	ELSYS_ERS_L	24.00 C	ers Test otaa	Werte Anzeigen
99	-35	867.700	SF12BW12	5 90	2020-09-24 14:33:32	T330_Heat	0100011B	L+G_UH	0.000 kW	Test T330	Werte Anzeigen
	-	-	-	-	-	0100028C_652	0100028C	Bosch_PS	1	Feldtester	Werte Anzeigen
	-60	867.900	SF12BW12	5 110	2020-09-21 15:59:58	Adeunis_Temp	0100011E	Adeunis_Tmp	n/a		Werte Anzeigen
	-26	868.100	SF12BW12	5 100	2020-09-24 14:33:20	Adeunis_S0	01000120	Adeunis_S0	n/a	test driver	Werte Anzeigen
99	-38	867.900	SF12BW12	120	2020-10-09 22:55:53	GWF_Gas	01000123	GWF_Volume	1.220 cbm	Gas Mainz	Werte Anzeigen

Liste

Angezeigt werden hier die bereits in RmCU/MiDASS installierten Zähler sowie die aktuellen Zählerstände. Grau hinterlegte Zähler sind nicht aktiviert.

<u>! :</u>

Das Status-Flag liefert schnell Informationen zum Erfolg des Werteauslesens

Blau	: Es wurde noch kein Wert eingelesen
Grün	: Der letzte Wert wurde erfolgreich eingelesen
Rot	: Der letzte Wert wurde nicht erfolgreich eingelesen

Im Fehlerfall wird hier auch der Fehlercode angezeigt.

RSSI [dBm]:

Hier wird der Empfangspegel des zuletzt empfangenen Protokolls angezeigt. Je größer der Wert, umso höher ist der Empfangspegel.

Freq [MHz]:

Hier wird die Empfangsfrequenz des zuletzt empfangenen Protokolls angezeigt.

SFBW:

Hier wird der Spreizfaktor (SF7 – SF12) und die Bandbreite angezeigt

SNR [dB]:

Hier wird das Signal-Rausch-Verhältnis angezeigt

Empfangszeit:

Hier wird Datum und Uhrzeit des zuletzt empfangenen Protokolls angezeigt.

TPID:

Dem Zähler muss eine TPID (Test Point ID, die eindeutige Bezeichnung des Zählers) zugeordnet werden.

DevAddr:

Hier wird die Geräteadresse des Zählers angezeigt.

DevType:

Hier wird der Typ des Zählers angezeigt.

Wert:

Anzeige des Zählerstandes. Der Zählerstand kann nur angezeigt werden, wenn das empfangene Protokoll decodierbar ist.

Bemerkung:

Anzeige der frei definierten Beschreibung (max. 200 Zeichen).

Werte anzeigen:

Hier können alle aktuellen Messwerte des Sensors angezeigt werden.

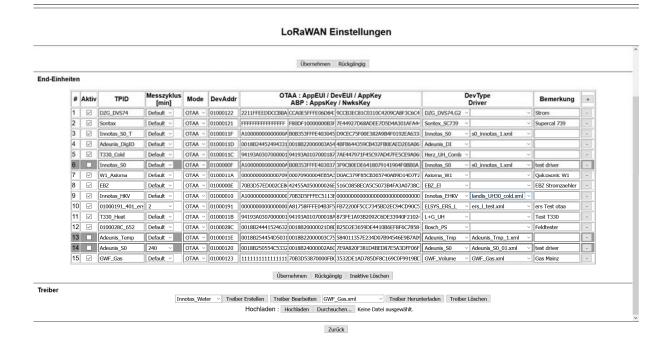
Debua:

Hier wird die Kommunikation auf dem LoRa mitgeschnitten. Die angezeigten Telegramme dienen vor allem dem Debugging und dem Support

LoRa Protocol

Zurück

Einrichten:


Mit diesem Button wird die später beschriebene Setup-Seite aufgerufen.

Aktualisieren:

Um aktuelle Änderungen zu sehen muss der Refresh- Knopf gedrückt werden.

Setup:

• Sektion: "Einstellungen"

Aktiv (Default: Deaktiviert):

Hier kann der Messbetrieb gestoppt werden, dabei wird der Empfänger ausgeschaltet.

Neue Geräte einfügen:

Die unbekannte LoRaWAN Sensoren werden automatisch in die Tabelle als inaktive eingefügt.

RSSI als MPID:

Der RSSI Wert wird mit den anderen Zählerwerten geloggt.

Protokollaufzeichnung / Debug:

Das Mitloggen des Protokolls findet statt.

• Sektion: "End Einheiten"

Liste

#:

Index

Aktiv:

Wenn der Haken gesetzt ist findet eine Auswertung der geschickten Datenpakete statt. Ein Zähler kann z.B. deaktiviert werden, wenn er momentan nicht funktionsfähig ist oder nicht zu der Installation gehört. Wird eine dieser Einstellungen geändert so muss der Apply- Button gedrückt werden.

TPID:

Hier muss dem Zähler eine TPID zugewiesen werden

Messzyklus [min]:

Hier kann ein vom Default-Messzyklus abweichender Messzyklus für das Gerät ausgewählt werden.

Mode:

LoRaWAN Aktivierungsmodus OTAA oder ABP.

Im OTAA Modus müssen die Felder AppEUI, DevEUI und AppKey ausgefüllt werden. Im ABP – DevAddr, AppsKey und NwksKey.

In der Regel erhält man die Daten vom Hersteller des Zählers.

DevAddr:

Die Adresse des Sensors. Im ABP Aktivierungsmodus soll man sie vom Zähler ablesen und eintragen. Im OTAA – wird die Adresse dem Zähler bei der Aktivierung zugewiesen.

OTAA: AppEUI/DevEUI/AppKey:

Application Identifier (auch bekannt als Join EUI) / End-device Identifier / Application Key

ABP: AppsKey/NwksKey:

Application session key / Network session key

DevType / Driver:

Das Gerät wird hier aus einer Liste unterstützter Geräte ausgewählt. Unter Driver kann ein vorgefertigter LoRa-Treiber angewählt werden.

Bemerkung:

Anzeige der frei definierten Beschreibung (max. 200 Zeichen).

8 von 9

• Sektion: "Treiber"

	Treiber Erstellen	
	Treibername : elsys_ers	
	ELSYS_ERS_L Bemerkung: Raumsensor	
lesswerte		
	#Aktiv MPID Faktor Offset Bemerkung	
	1	
	2 ☑ AH (%) Air H → 1.000000 (0.00000) 3 ☑ V (V) Voltage → 1.000000 (0.00000)	
	3 🗵 [v [v] Voltage ~ [1.00000 [0.000000]	
	Übernehmen Rückgängig	
	overleasings to again	
	Zurück	

Treibername und Bemerkumng:

Hier kann ein Treibername und ein beschreibender Bemerkungstext vergeben werden

• Sektion: "Messwerte"

Aktiv.

Einzelne Messpunkte können aktiviert bzw. deaktiviert werden.

MPID:

Hier wird vorgeben auf welche MPID der Messwert gemappt wird.

Faktor und Offset:

Über die Eingabe eines Faktors und eines Offsets kann die Einheit des Messwertes normiert werden.

Bemerkung:

Vom Benutzer vorgegebener Text (max. 200 Zeichen).

9 von 9